Model Gallery

32 models from 1 repositories

Filter by type:

Filter by tags:

huihui-glm-4.6v-flash-abliterated
**Huihui-GLM-4.6V-Flash (Abliterated)** A text-based large language model derived from the **zai-org/GLM-4.6V-Flash** base model, featuring reduced safety filters and uncensored capabilities. Designed for text generation, it supports conversational tasks but excludes image processing. **Key Features:** - **Base Model**: GLM-4.6V-Flash (original author: zai-org) - **Quantized Format**: GGUF (optimized for efficiency). - **No Image Support**: Only text-based interactions are enabled. - **Custom Training**: Abliterated to remove restrictive outputs, prioritizing openness over safety. **Important Notes:** - **Risk of Sensitive Content**: Reduced filtering may generate inappropriate or controversial outputs. - **Ethical Use**: Suitable for research or controlled environments; not recommended for public or commercial deployment without caution. - **Legal Responsibility**: Users must ensure compliance with local laws and ethical guidelines. **Use Cases:** - Experimental text generation. - Controlled research environments. - Testing safety filtering mechanisms. *Note: This model is not suitable for production or public-facing applications without thorough review.*

Repository: localai

qwen3-coder-30b-a3b-instruct-rtpurbo-i1
The model in question is a quantized version of the original **Qwen3-Coder** large language model, specifically tailored for code generation. The base model, **RTP-LLM/Qwen3-Coder-30B-A3B-Instruct-RTPurbo**, is a 30B-parameter variant optimized for instruction-following and code-related tasks. It employs the **A3B attention mechanism** and is trained on diverse data to excel in programming and logical reasoning. The current repository provides a quantized (compressed) version of this model, which is suitable for deployment on hardware with limited memory but loses some precision compared to the original. For a high-fidelity version, the unquantized base model is recommended.

Repository: localai

arcee-ai_afm-4.5b
AFM-4.5B is a 4.5 billion parameter instruction-tuned model developed by Arcee.ai, designed for enterprise-grade performance across diverse deployment environments from cloud to edge. The base model was trained on a dataset of 8 trillion tokens, comprising 6.5 trillion tokens of general pretraining data followed by 1.5 trillion tokens of midtraining data with enhanced focus on mathematical reasoning and code generation. Following pretraining, the model underwent supervised fine-tuning on high-quality instruction datasets. The instruction-tuned model was further refined through reinforcement learning on verifiable rewards as well as for human preference. We use a modified version of TorchTitan for pretraining, Axolotl for supervised fine-tuning, and a modified version of Verifiers for reinforcement learning. The development of AFM-4.5B prioritized data quality as a fundamental requirement for achieving robust model performance. We collaborated with DatologyAI, a company specializing in large-scale data curation. DatologyAI's curation pipeline integrates a suite of proprietary algorithms—model-based quality filtering, embedding-based curation, target distribution-matching, source mixing, and synthetic data. Their expertise enabled the creation of a curated dataset tailored to support strong real-world performance. The model architecture follows a standard transformer decoder-only design based on Vaswani et al., incorporating several key modifications for enhanced performance and efficiency. Notable architectural features include grouped query attention for improved inference efficiency and ReLU^2 activation functions instead of SwiGLU to enable sparsification while maintaining or exceeding performance benchmarks. The model available in this repo is the instruct model following supervised fine-tuning and reinforcement learning.

Repository: localaiLicense: aml

gemma-3-27b-it
Google/gemma-3-27b-it is an open-source, state-of-the-art vision-language model built from the same research and technology used to create the Gemini models. It is multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 models have a large, 128K context window, multilingual support in over 140 languages, and are available in more sizes than previous versions. They are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Repository: localaiLicense: gemma

gemma-3-4b-it
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. Gemma-3-4b-it is a 4 billion parameter model.

Repository: localaiLicense: gemma

gemma-3-1b-it
google/gemma-3-1b-it is a large language model with 1 billion parameters. It is part of the Gemma family of open, state-of-the-art models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. These models have multilingual support in over 140 languages, and are available in more sizes than previous versions. They are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Repository: localaiLicense: gemma

gemma-3-12b-it-qat
This model corresponds to the 12B instruction-tuned version of the Gemma 3 model in GGUF format using Quantization Aware Training (QAT). The GGUF corresponds to Q4_0 quantization. Thanks to QAT, the model is able to preserve similar quality as bfloat16 while significantly reducing the memory requirements to load the model. You can find the half-precision version here.

Repository: localaiLicense: gemma

gemma-3-4b-it-qat
This model corresponds to the 4B instruction-tuned version of the Gemma 3 model in GGUF format using Quantization Aware Training (QAT). The GGUF corresponds to Q4_0 quantization. Thanks to QAT, the model is able to preserve similar quality as bfloat16 while significantly reducing the memory requirements to load the model. You can find the half-precision version here.

Repository: localaiLicense: gemma

gemma-3-27b-it-qat
This model corresponds to the 27B instruction-tuned version of the Gemma 3 model in GGUF format using Quantization Aware Training (QAT). The GGUF corresponds to Q4_0 quantization. Thanks to QAT, the model is able to preserve similar quality as bfloat16 while significantly reducing the memory requirements to load the model. You can find the half-precision version here.

Repository: localaiLicense: gemma

soob3123_amoral-gemma3-12b
A fine-tuned version of Google's Gemma 3 12B instruction-tuned model optimized for creative freedom and reduced content restrictions. This variant maintains strong reasoning capabilities while excelling in roleplaying scenarios and open-ended content generation. Key Modifications: Reduced refusal mechanisms compared to base model Enhanced character consistency in dialogues Improved narrative flow control Optimized for multi-turn interactions Intended Use Primary Applications: Interactive fiction and storytelling Character-driven roleplaying scenarios Creative writing assistance Experimental AI interactions Content generation for mature audiences

Repository: localaiLicense: gemma

medgemma-4b-it
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in two variants: a 4B multimodal version and a 27B text-only version. MedGemma 4B utilizes a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Its LLM component is trained on a diverse set of medical data, including radiology images, histopathology patches, ophthalmology images, and dermatology images. MedGemma 4B is available in both pre-trained (suffix: -pt) and instruction-tuned (suffix -it) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models. MedGemma 27B has been trained exclusively on medical text and optimized for inference-time computation. MedGemma 27B is only available as an instruction-tuned model. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These include both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details.

Repository: localaiLicense: gemma

medgemma-27b-text-it
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in two variants: a 4B multimodal version and a 27B text-only version. MedGemma 4B utilizes a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Its LLM component is trained on a diverse set of medical data, including radiology images, histopathology patches, ophthalmology images, and dermatology images. MedGemma 4B is available in both pre-trained (suffix: -pt) and instruction-tuned (suffix -it) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models. MedGemma 27B has been trained exclusively on medical text and optimized for inference-time computation. MedGemma 27B is only available as an instruction-tuned model. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These include both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details.

Repository: localaiLicense: gemma

gemma-3n-e2b-it
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3n models are designed for efficient execution on low-resource devices. They are capable of multimodal input, handling text, image, video, and audio input, and generating text outputs, with open weights for pre-trained and instruction-tuned variants. These models were trained with data in over 140 spoken languages. Gemma 3n models use selective parameter activation technology to reduce resource requirements. This technique allows the models to operate at an effective size of 2B and 4B parameters, which is lower than the total number of parameters they contain. For more information on Gemma 3n's efficient parameter management technology, see the Gemma 3n page.

Repository: localaiLicense: gemma

gemma-3n-e4b-it
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3n models are designed for efficient execution on low-resource devices. They are capable of multimodal input, handling text, image, video, and audio input, and generating text outputs, with open weights for pre-trained and instruction-tuned variants. These models were trained with data in over 140 spoken languages. Gemma 3n models use selective parameter activation technology to reduce resource requirements. This technique allows the models to operate at an effective size of 2B and 4B parameters, which is lower than the total number of parameters they contain. For more information on Gemma 3n's efficient parameter management technology, see the Gemma 3n page.

Repository: localaiLicense: gemma

google_medgemma-4b-it
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in three variants: a 4B multimodal version and 27B text-only and multimodal versions. Both MedGemma multimodal versions utilize a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Their LLM components are trained on a diverse set of medical data, including medical text, medical question-answer pairs, FHIR-based electronic health record data (27B multimodal only), radiology images, histopathology patches, ophthalmology images, and dermatology images. MedGemma 4B is available in both pre-trained (suffix: -pt) and instruction-tuned (suffix -it) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models. MedGemma 27B multimodal has pre-training on medical image, medical record and medical record comprehension tasks. MedGemma 27B text-only has been trained exclusively on medical text. Both models have been optimized for inference-time computation on medical reasoning. This means it has slightly higher performance on some text benchmarks than MedGemma 27B multimodal. Users who want to work with a single model for both medical text, medical record and medical image tasks are better suited for MedGemma 27B multimodal. Those that only need text use-cases may be better served with the text-only variant. Both MedGemma 27B variants are only available in instruction-tuned versions. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These evaluations are based on both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details. MedGemma is optimized for medical applications that involve a text generation component. For medical image-based applications that do not involve text generation, such as data-efficient classification, zero-shot classification, or content-based or semantic image retrieval, the MedSigLIP image encoder is recommended. MedSigLIP is based on the same image encoder that powers MedGemma.

Repository: localaiLicense: gemma

google_medgemma-27b-it
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in three variants: a 4B multimodal version and 27B text-only and multimodal versions. Both MedGemma multimodal versions utilize a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Their LLM components are trained on a diverse set of medical data, including medical text, medical question-answer pairs, FHIR-based electronic health record data (27B multimodal only), radiology images, histopathology patches, ophthalmology images, and dermatology images. MedGemma 4B is available in both pre-trained (suffix: -pt) and instruction-tuned (suffix -it) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models. MedGemma 27B multimodal has pre-training on medical image, medical record and medical record comprehension tasks. MedGemma 27B text-only has been trained exclusively on medical text. Both models have been optimized for inference-time computation on medical reasoning. This means it has slightly higher performance on some text benchmarks than MedGemma 27B multimodal. Users who want to work with a single model for both medical text, medical record and medical image tasks are better suited for MedGemma 27B multimodal. Those that only need text use-cases may be better served with the text-only variant. Both MedGemma 27B variants are only available in instruction-tuned versions. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These evaluations are based on both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended use section below for more details. MedGemma is optimized for medical applications that involve a text generation component. For medical image-based applications that do not involve text generation, such as data-efficient classification, zero-shot classification, or content-based or semantic image retrieval, the MedSigLIP image encoder is recommended. MedSigLIP is based on the same image encoder that powers MedGemma.

Repository: localaiLicense: gemma

gemma-3-270m-it-qat
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. This model is a QAT (Quantization Aware Training) version of the Gemma 3 270M model. It is quantized to 4-bit precision, which means that it uses 4-bit floating point numbers to represent the weights and activations of the model. This reduces the memory footprint of the model and makes it faster to run on GPUs.

Repository: localaiLicense: gemma

salamandra-7b-instruct
Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data. The pre-training corpus contains text in 35 European languages and code. Salamandra comes in three different sizes — 2B, 7B and 40B parameters — with their respective base and instruction-tuned variants. This model card corresponds to the 7B instructed version.

Repository: localaiLicense: apache-2.0

llama-3.2-1b-instruct:q4_k_m
The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model Developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.

Repository: localaiLicense: llama3.2

llama-3.2-3b-instruct:q4_k_m
The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model Developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.

Repository: localaiLicense: llama3.2

llama-3.2-3b-instruct:q8_0
The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model Developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.

Repository: localaiLicense: llama3.2

Page 1