Model Gallery

21 models from 1 repositories

Filter by type:

Filter by tags:

huihui-glm-4.6v-flash-abliterated
**Huihui-GLM-4.6V-Flash (Abliterated)** A text-based large language model derived from the **zai-org/GLM-4.6V-Flash** base model, featuring reduced safety filters and uncensored capabilities. Designed for text generation, it supports conversational tasks but excludes image processing. **Key Features:** - **Base Model**: GLM-4.6V-Flash (original author: zai-org) - **Quantized Format**: GGUF (optimized for efficiency). - **No Image Support**: Only text-based interactions are enabled. - **Custom Training**: Abliterated to remove restrictive outputs, prioritizing openness over safety. **Important Notes:** - **Risk of Sensitive Content**: Reduced filtering may generate inappropriate or controversial outputs. - **Ethical Use**: Suitable for research or controlled environments; not recommended for public or commercial deployment without caution. - **Legal Responsibility**: Users must ensure compliance with local laws and ethical guidelines. **Use Cases:** - Experimental text generation. - Controlled research environments. - Testing safety filtering mechanisms. *Note: This model is not suitable for production or public-facing applications without thorough review.*

Repository: localai

qwen3-coder-30b-a3b-instruct-rtpurbo-i1
The model in question is a quantized version of the original **Qwen3-Coder** large language model, specifically tailored for code generation. The base model, **RTP-LLM/Qwen3-Coder-30B-A3B-Instruct-RTPurbo**, is a 30B-parameter variant optimized for instruction-following and code-related tasks. It employs the **A3B attention mechanism** and is trained on diverse data to excel in programming and logical reasoning. The current repository provides a quantized (compressed) version of this model, which is suitable for deployment on hardware with limited memory but loses some precision compared to the original. For a high-fidelity version, the unquantized base model is recommended.

Repository: localai

glm-4.5v-i1
The model in question is a **quantized version** of the **GLM-4.5V** large language model, originally developed by **zai-org**. This repository provides multiple quantized variants of the model, optimized for different trade-offs between size, speed, and quality. The base model, **GLM-4.5V**, is a multilingual (Chinese/English) large language model, and this quantized version is designed for efficient inference on hardware with limited memory. Key features include: - **Quantization options**: IQ2_M, Q2_K, Q4_K_M, IQ3_M, IQ4_XS, etc., with sizes ranging from 43 GB to 96 GB. - **Performance**: Optimized for inference, with some variants (e.g., Q4_K_M) balancing speed and quality. - **Vision support**: The model is a vision model, with mmproj files available in the static repository. - **License**: MIT-licensed. This quantized version is ideal for applications requiring compact, efficient models while retaining most of the original capabilities of the base GLM-4.5V.

Repository: localaiLicense: mit

ai21labs_ai21-jamba-reasoning-3b
AI21’s Jamba Reasoning 3B is a top-performing reasoning model that packs leading scores on intelligence benchmarks and highly-efficient processing into a compact 3B build. The hybrid design combines Transformer attention with Mamba (a state-space model). Mamba layers are more efficient for sequence processing, while attention layers capture complex dependencies. This mix reduces memory overhead, improves throughput, and makes the model run smoothly on laptops, GPUs, and even mobile devices, while maintainig impressive quality.

Repository: localaiLicense: apache-2.0

ibm-granite_granite-4.0-h-small
Granite-4.0-H-Small is a 32B parameter long-context instruct model finetuned from Granite-4.0-H-Small-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging. Granite 4.0 instruct models feature improved instruction following (IF) and tool-calling capabilities, making them more effective in enterprise applications.

Repository: localaiLicense: apache-2.0

ibm-granite_granite-4.0-h-tiny
Granite-4.0-H-Tiny is a 7B parameter long-context instruct model finetuned from Granite-4.0-H-Tiny-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging. Granite 4.0 instruct models feature improved instruction following (IF) and tool-calling capabilities, making them more effective in enterprise applications.

Repository: localaiLicense: apache-2.0

ibm-granite_granite-4.0-h-micro
Granite-4.0-H-Micro is a 3B parameter long-context instruct model finetuned from Granite-4.0-H-Micro-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging. Granite 4.0 instruct models feature improved instruction following (IF) and tool-calling capabilities, making them more effective in enterprise applications.

Repository: localaiLicense: apache-2.0

ibm-granite_granite-4.0-micro
Granite-4.0-Micro is a 3B parameter long-context instruct model finetuned from Granite-4.0-Micro-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging. Granite 4.0 instruct models feature improved instruction following (IF) and tool-calling capabilities, making them more effective in enterprise applications.

Repository: localaiLicense: apache-2.0

baidu_ernie-4.5-21b-a3b-thinking
Over the past three months, we have continued to scale the thinking capability of ERNIE-4.5-21B-A3B, improving both the quality and depth of reasoning, thereby advancing the competitiveness of ERNIE lightweight models in complex reasoning tasks. We are pleased to introduce ERNIE-4.5-21B-A3B-Thinking, featuring the following key enhancements: Significantly improved performance on reasoning tasks, including logical reasoning, mathematics, science, coding, text generation, and academic benchmarks that typically require human expertise. Efficient tool usage capabilities. Enhanced 128K long-context understanding capabilities. Note: This version has an increased thinking length. We strongly recommend its use in highly complex reasoning tasks. ERNIE-4.5-21B-A3B-Thinking is a text MoE post-trained model, with 21B total parameters and 3B activated parameters for each token.

Repository: localaiLicense: apache-2.0

aurore-reveil_koto-small-7b-it
Koto-Small-7B-IT is an instruct-tuned version of Koto-Small-7B-PT, which was trained on MiMo-7B-Base for almost a billion tokens of creative-writing data. This model is meant for roleplaying and instruct usecases.

Repository: localaiLicense: mit

opengvlab_internvl3_5-30b-a3b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-30b-a3b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-14b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-14b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-8b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-8b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-4b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-4b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-2b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

kwaipilot_kwaicoder-autothink-preview
KwaiCoder-AutoThink-preview is the first public AutoThink LLM released by the Kwaipilot team at Kuaishou. The model merges thinking and non‑thinking abilities into a single checkpoint and dynamically adjusts its reasoning depth based on the input’s difficulty.

Repository: localaiLicense: kwaipilot-license

ibm-granite.granite-4.0-1b
### **Granite-4.0-1B** *By IBM | Apache 2.0 License* **Overview:** Granite-4.0-1B is a lightweight, instruction-tuned language model designed for efficient on-device and research use. Built on a decoder-only dense transformer architecture, it delivers strong performance in instruction following, code generation, tool calling, and multilingual tasks—making it ideal for applications requiring low latency and minimal resource usage. **Key Features:** - **Size:** 1.6 billion parameters (1B Dense), optimized for efficiency. - **Capabilities:** - Text generation, summarization, question answering - Code completion and function calling (e.g., API integration) - Multilingual support (English, Spanish, French, German, Japanese, Chinese, Arabic, Korean, Portuguese, Italian, Dutch, Czech) - Robust safety and alignment via instruction tuning and reinforcement learning - **Architecture:** Uses GQA (Grouped Query Attention), SwiGLU activation, RMSNorm, shared input/output embeddings, and RoPE position embeddings. - **Context Length:** Up to 128K tokens — suitable for long-form content and complex reasoning. - **Training:** Finetuned from *Granite-4.0-1B-Base* using open-source datasets, synthetic data, and human-curated instruction pairs. **Performance Highlights (1B Dense):** - **MMLU (5-shot):** 59.39 - **HumanEval (pass@1):** 74 - **IFEval (Alignment):** 80.82 - **GSM8K (8-shot):** 76.35 - **SALAD-Bench (Safety):** 93.44 **Use Cases:** - On-device AI applications - Research and prototyping - Fine-tuning for domain-specific tasks - Low-resource environments with high performance expectations **Resources:** - [Hugging Face Model](https://huggingface.co/ibm-granite/granite-4.0-1b) - [Granite Docs](https://www.ibm.com/granite/docs/) - [GitHub Repository](https://github.com/ibm-granite/granite-4.0-nano-language-models) > *“Make knowledge free for everyone.” – IBM Granite Team*

Repository: localaiLicense: apache-2.0